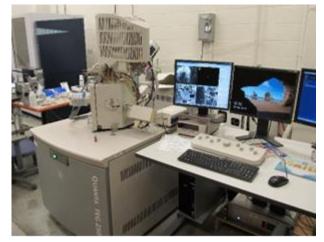


FEI Quanta 250 E-SEM/Helios NanoLab 660/G3

Date May 30, 2023


Revision 1.0

Primary Nicolas Briot Trainer

Purpose: Basic energy dispersive spectroscopy operation (EDS) on the FEI Quanta 250 E-SEM & Helios NanoLab 660/G3

Required PPE:

Quanta FEG 250 E-SEM

Helios NanoLab 660/G3

Operational SOP FEI Quanta 250 E-SEM/Helios NanoLab 660/G3

Date May 30, 2023 Revision 1.0 **Primary** Nicolas Briot Trainer

Potential Hazards:

This instrument generates x-ray radiation when the electron and/or ion beam are ON.

Some parts of this instrument create strong magnetic fields, although not extending more than 15 cm (6 in).

Reference Documents:

Scanning Electron Microscopy and X-Ray Microanalysis, 4th Edition, Goldstein et al.

Required Equipment & Materials:

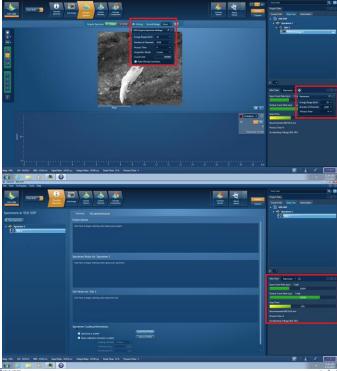
"Stop" button.

with the detector.

- SEM holders
- SEM mounting accessories

detector in case of collision using the

Pause the chamber view, it interferes


Key Points Steps 1. Detector insertion (Helios) Mount and load any samples as normal, with the addition of a small piece of copper tape (or silicon if you will be using an accelerating voltage too low to fully excite copper x-rays) in a blank spot on your mount. Bring the surface of the sample to the analytical working distance. Insert the EDS detector using the "In" button. Be prepared to stop the

FEI Quanta 250 E-SEM/Helios NanoLab 660/G3

Date May 30, 2023 Revision 1.0 **Primary** Nicolas Briot Trainer

- 2. Accelerating voltage selection
 - The accelerating voltage of the electron beam should be at least 2.5x the energy of the peak(s) of interest in eV
 - The accelerating voltage should not be so high that the interaction volume is increased needlessly or that significant charging occurs.
- 3. Process time & spot size/beam current selection
 - Increased process time creates high quality data, at the expense of lower count rates and higher dead time (& thus longer acquisition times to gather sufficient counts).
 - Increased spot size/beam current creates higher count rates but increases dead time (& thus lowers data quality).
 - Process time & spot size/beam current should be adjusted to provide optimal count rates and dead time for each sample (refer to individual training).

- 4. Beam Measurement Calibration
 - Open "Optimization" in the indicated dropdown menu.
 - Select "Beam Measurement" if it is not already selected.
 - Set your beam current/spot size and accelerating voltage to the settings you will be using for your sample.
 - Move the stage so that you are focused on the pure copper or silicon
 - Select the correct element based on

FEI Quanta 250 E-SEM/Helios NanoLab 660/G3

Date May 30, 2023

Revision 1.0

Primary Trainer Nicolas Briot

whether you are using copper or silicon to calibrate, then start the calibration by clicking "Start."

- 5. Point scans, line scans, & maps
 - Point scans can be used to cover a specific point or region as a whole & are useful for gathering an average composition of a feature or region.
 - Line scans can be used to cover a line and are useful for examining composition changes with position.
 - Maps can be used to cover the points within a region & are useful for examining composition changes in two dimensions of position. However, maps can be significantly more time consuming.

6. Detector Retraction

 Do NOT vent the chamber before retracting the detector. Retract the detector using the "Out" button. Be prepared to stop the detector in case of collision.

FEI Quanta 250 E-SEM/Helios NanoLab 660/G3

Date	May 30, 2023	
Revision	1.0	
Primary	Nicolas Briot	

History of Revisions			
Revision Number	Revision Date	Revised By	Reason for Revision